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The Effects of Data Selection and Thematic 
Detail on the Accuracy of High Spatial 

Resolution Wetland Classifi cations
Joseph F. Knight, Bryan P. Tolcser, Jennifer M. Corcoran, and Lian P. Rampi

Abstract
Accurate wetland maps are of critical importance for preserv-
ing the ecosystem functions provided by these valuable land-
scape elements. Though extensive research into wetland map-
ping methods using remotely sensed data exists, questions 
remain as to the effects of data type and classifi cation scheme 
on classifi cation accuracy when high spatial resolution data 
are used. The goal of this research was to examine the effects 
on wetland mapping accuracy of varying input datasets and 
thematic detail in two physiographically different study areas 
using a decision tree classifi er. The results indicate that: topo-
graphic data and derivatives signifi cantly increase mapping 
accuracy over optical imagery alone, the source of the eleva-
tion data and the type of topographic derivatives used were 
not major factors, the inclusion of radar and leaf-off imagery 
did not improve mapping accuracy, and increasing thematic 
detail resulted in signifi cantly lower mapping accuracies i.e., 
particularly in more diverse wetland areas.

Introduction
Wetlands are a valuable natural resource and play a cru-
cial role in the ecological systems of a landscape. Wetlands 
provide important ecosystem functions such as maintaining 
water quality by fi ltering nutrients and pollutants, storing 
fl oodwater and mitigating its effects, and providing habitat 
for a variety of wildlife adapted to saturated environments. 
Wetlands also play a role in the global carbon cycle, acting 
as both carbon sources and sinks (Keddy, 2000; Mitsch and 
Gosselink, 2000). 

Wetland loss has occurred at a rapid rate in the United 
States. In the years between European settlement and the 
1980s, the 48 conterminous states lost an estimated 53 percent 
of wetland acreage due to human activities such as agricul-
ture, urbanization, and pollution (Dahl, 1990). In the state of 
Minnesota, United States, over 50 percent of the estimated 
pre-settlement 3.6 million ha of wetlands have been lost 
statewide. However, the degree of wetland loss is greatest, 
over 80 percent, in southern and western Minnesota where 
wetlands were drained primarily for agriculture. Urbanization 
has caused comparatively smaller wetland area losses, but has 
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signifi cantly altered wetlands’ physical, biological, and chem-
ical properties (Johnston, 1989). The loss of wetlands con-
tinues, but some studies suggest that wetland loss is slowing 
due to regulatory controls (Dahl and Johnson, 1991). Despite 
the critical importance of accurate mapping of the spatial 
distributions of wetlands for making policy decisions related 
to preservation of existing wetlands (Baker et al., 2006), the 
National Wetlands Inventory (NWI) in Minnesota is as much as 
38 years out of date in some areas (MNGeo, 2012).

Accurate mapping of wetlands can be achieved through 
a variety of approaches ranging from fi eld investigation to 
remote wetland assessment. Due to the high costs of perform-
ing fi eld wetland mapping, remote sensing-based approaches 
have been used for several decades (Cowardin and Myers, 
1974). Numerous studies have examined remote sensing 
based data sources and approaches for wetland mapping. 

Frequently examined methods include aerial photograph 
interpretation and satellite image analysis of both single 
and multi-date optical satellite imagery, in which optical 
properties (e.g., refl ectance) of wetland vegetation and land 
forms are assessed (Baker et al., 2006; Harvey et al., 2001; 
Hodgson et al., 1987; Lunetta and Balogh, 1999; Ozesmi 
and Bauer, 2002; Pope, 1994; Sader et al., 1995; Tiner, 1990; 
Townsend and Walsh, 2001; Wang et al., 1998a; Wright and 
Gallant, 2007). A notable example of a project incorporating 
these techniques is the National Oceanic and Atmospheric 
Administration’s (NOAA) Coastal Change Analysis Program 
(C-CAP). C-CAP provides periodic land-use/land-cover clas-
sifi cations of areas near coastlines and the Great Lakes, with 
the goal of studying change, including in wetlands, in those 
areas. A somewhat less studied optical method involves the 
use of hyperspectral imagery to map wetlands based on fi ne 
details in vegetation spectral response. Though hyperspectral 
imagery can be used to derive accurate wetland maps, the 
data acquisition, storage, and processing requirements are 
greater than those of multispectral imagery (Becker et al., 2005 
and 2007; Hirano et al., 2003; Jollineau and Howarth, 2008; 
Neuenschwander et al., 1998; Wang et al., 1998b). Though 
useful, hyperspectral data were not available for inclusion in 
this project. In recent years, high spatial resolution satellite 
and aerial imagery have been assessed for wetland mapping 
potential. Maxa and Bolstad (2009) used Ikonos imagery and 
lidar data to map northern wetlands, which outperformed an 
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Despite the aforementioned extensive research in wet-
land mapping, many questions remain i.e., particularly with 
respect to studies using high spatial resolution imagery. An 
important question is which data types, among the many that 
are available to geospatial researchers, should one prioritize 
for inclusion in high spatial resolution mapping projects. In 
the research described here, we examined the effects of data 
type selection on wetland mapping accuracy using multiple 
classifi cation schemes in two physiographically different 
study areas. The specifi c goals of this study were: (a) to exam-
ine the advantages and disadvantages of using several input 
geospatial datasets for mapping wetlands, (b) to describe the 
suitability of geospatial data for classifying wetlands accord-
ing to three schemes (wetland/non-wetland, Cowardin class, 
and MNDNR), and (c) To compare classifi cation accuracies of 
wetlands in two very different physiographic regions.

Study Areas
Two study areas in Minnesota were selected for this research, 
one located in the Minneapolis-St. Paul metropolitan area 
and one located in the northeast forested region (Figure 1). 
These areas were selected because they represent a wide range 
of wetland types and because geospatial datasets and fi eld 
reference data (described below) were available. The metro 
study area encompassed the limits of the City of Chanhassen, 
Minnesota, a southwestern suburb of Minneapolis with an 
area of approximately 60 km2. Land-use within the city is 
primarily medium density residential with some areas of 
industrial and dedicated open space. Wetlands, lakes, ponds, 
and rivers account for approximately 27 percent of the city’s 
surface area (City of Chanhassen, 2006).

The Fond du Lac Reservation (FDL), located northwest 
of the City of Cloquet, Minnesota, is part of the boreal for-
est biome. FDL has an area of approximately 390 km2. The 
land-cover is dominated by both deciduous and evergreen 
forests and low density residential. Wetlands and water bod-
ies account for approximately 38 percent of FDL’s surface area. 
The FDL area experienced dryer than normal weather condi-
tions during 2009 when some of the FDL imagery used in this 
study were acquired. Drought conditions persisted throughout 
the spring and summer of 2009, which may have affected the 
study results with respect to the measured utility of those 
images.

Methods
Classifi cation Schemes
Three classifi cation schemes were used in this study: (a) A 
simple wetland versus upland discrimination, (b) Wetlands 
classifi ed to the Cowardin class level (Cowardin et al., 1974; 
Table 1), and (c) A simplifi ed plant community classifi cation 
(hereafter termed “MNDNR”). The MNDNR scheme was devel-
oped by the Minnesota Department of Natural Resources (DNR) 
and is based on Eggers and Reed (1997), with modifi cations to 
make the scheme more appropriate for remote sensing-based 
mapping of wetlands. The full classifi cation scheme including 
class defi nitions can be found in Kloiber and MacLeod, 2011. 
The scheme is in offi cial use in Minnesota within the wetland 
mapping group of the DNR. In addition, it is dissimilar to the 
Cowardin scheme; thus it provides a useful and applicable 
base for comparison of the various input data types used. 

Tables 2 and 3 show the wetland composition in 
Chanhassen and FDL by Cowardin and MNDNR classes, respec-
tively. Wetland data for the City of Chanhassen were collected 
during the 2006 Surface Water Management Plan (SWMP) 
update (described below); data for FDL were derived from a 

existing wetland inventory for the State of Wisconsin. Laba 
et al. (2008) used QuickBird imagery to map invasive wet-
land species. Bowen et al. (2010) used high-resolution aerial 
images and ancillary data to map playa wetlands in Kansas. 
Halabisky et al. (2011) used a combination of high-resolution 
imagery and object-based classifi cation to map semi-arid wet-
lands. Many other studies have examined issues such as wet-
land vegetation analysis and coastal wetland mapping with 
high spatial resolution imagery (Dechka et al., 2002; Ramsey 
and Laine, 1997; Wei and Chow-Fraser, 2011).

Radar imagery has been shown to have utility for wetland 
remote sensing. Unlike optical sensors, radar sensors operate 
in the microwave portion of the electromagnetic spectrum and 
are insensitive to most atmospheric and low light conditions. 
Radar backscatter is sensitive to soil and vegetation mois-
ture properties and can, to some degree, penetrate the forest 
canopy and provide sub-canopy vegetation and soil saturation 
information (Whitcomb et al., 2007). Because radar is sensi-
tive to moisture, techniques using interferometric analysis 
of radar data have been shown to identify changes in water 
levels to within a centimeter (Wdowinski, 2008). Numerous 
researchers report that careful selection of the timing of image 
acquisition with respect to soil moisture levels, radar band(s) 
to be used, and the combination of radar and optical imagery 
results in higher wetlands mapping accuracies (Costa et al., 
2006; Dobson et al., 1995; Henderson and Lewis, 2008; Hess 
et al., 1990; Hess et al., 1995; Hess et al., 2003; Kasischke, 
1997; Lozano-Garcia and Hoffer, 1993; Ramsey, 1998; 
Rosenqvist et al., 2004; Wang et al., 1995). Others caution 
that radar imagery may be only situationally useful due to the 
effects of speckle and forest canopy interference on classifi ca-
tion results (Corcoran et al., 2012; Li and Chen, 2005).

Non-image geospatial data sets may provide valuable 
information for wetland mapping. Digital Elevation Models 
(DEM) are commonly used, both for elevation information and 
a number of topographic derivatives including slope, fl ow 
accumulation, and probability of soil wetness. Studies on the 
use of DEMs for land-cover mapping include the effects of DEM 
resolution on wetland mapping accuracy (Creed et al., 2003), 
determination of soil characteristics (NRCS, 2010; Thompson 
et al., 2001), use of a depth-to-water index for modeling of 
wet areas (Murphy et al., 2007), and the suitability of sev-
eral DEM derivatives for identifi cation of wetlands (Hogg and 
Todd, 2007).

A large number of studies have focused on the effects of 
classifi cation algorithm choice on wetland mapping accuracy, 
with rule-based and decision tree algorithms emerging as 
strong alternatives to traditional approaches such as maxi-
mum likelihood estimation (Bolstad and Lillesand, 1992; 
Rodriguez-Galiano, 2012). Hogg and Todd (2007) compared 
several statistical methods and found the Classifi cation 
and Regression Tree (CART) algorithm to result in the high-
est accuracy. Baker et al. (2006) compared the accuracy of 
Classifi cation Tree Analysis (CTA) and Stochastic Gradient 
Boosting (SGB) classifi ers and reported that the SGB method 
performed best. Liu et al. (2008) used a decision tree approach 
to successfully map mangrove forests. Rover et al. (2011) 
determined hydrologic function of wetlands using a decision 
tree classifi er. Li and Chen (2005), Parmuchi et al. (2002), and 
Phillips et al. (2005) developed rule-based wetland mapping 
methods for combining inputs from a variety of geospatial 
sources. In terms of more general (i.e., not wetland specifi c) 
land-cover/land-use mapping, a notable example is the 2001 
National Land Cover Database (NLCD), which was created 
using a decision tree classifi er with inputs composed of sev-
eral dates of imagery, topography and topographic derivatives, 
and other ancillary data sets such as impervious surface maps 
(Homer et al., 2004). 
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2008 one meter aerial image-based wetland inventory pro-
vided by FDL. Note that this latter FDL inventory was used for 
qualitative purposes only, as it was found to be of insuffi cient 
quality for either classifi er training or results validation.

Data Used
The data used in this research varied depending on the study 
area. Data common to both study areas included: National 
Agriculture Imagery Program (NAIP) images (acquired in sum-
mer of 2008, one meter spatial resolution, color infra-red, 5 m 
horizontal accuracy), US Department of Agriculture (USDA) 

Figure 1. Locations of study areas.

TABLE 1. COWARDIN WETLAND CLASSES

Cowardin Code1 Description

PEM Palustrine Emergent

PSS Palustrine Scrub Shrub

PFO Palustrine Forested

L Lacustrine

PUB Palustrine Unconsolidated Bottom
1 Cowardin codes are taken from Cowardin et al. (1974).

TABLE 2. SUMMARY OF WETLAND TYPES BY COWARDIN CLASS

Chanhassen Fond du Lac

Class Count Acres % of Total Count Acres % of Total

PEM 305 2304 58.4% 826 4311 11.8%

PFO 40 19 0.5% 1797 15776 43.1%

PSS 3 1 0.02% 2334 13584 37.1%

W1 189 1621 41.1% 309 2949 8.1%

Total Features 537 3944 100.0% 5266 36619 100.0%

Study Area 14515 27.2% 96119 38.1%
1 Water class included Lacustrine and PUB wetlands as well as non-vegetated stormwater detention basins.
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input dataset(s) into the requested output classes (“leaves”). 
Decision trees require no assumptions about the underlying 
distributions of the input datasets and are able to use both 
continuous and categorical data (Breiman, 2001; Friedl and 
Brodley, 1996; Quinlan, 1993). As mentioned above, these 
algorithms have been shown to perform well in land use/
cover mapping. The decision tree used was the See5 software 
package by Rulequest, Inc., along with the NLCD Mapping Tool 
developed by MDA, Ltd. Three steps were involved in the 
decision tree classifi cation: data sampling, data mining/tree 
creation, and classifi cation.

The fi rst step, data sampling, involved assembling 
training data points and collecting values from the input 
data layers. Training data for the Chanhassen classifi cation 
were derived from the city’s 2006 SWMP data (described in 
Accuracy Assessment below). Before the SWMP data were used 
for training, the polygons were edited to correct for changes 
resulting from a 2008 highway construction project. Five 
thousand simple random points were generated throughout 
the study area in each of wetland and upland areas, for a total 
of 10,000 training points. 

Training data for the FDL location were created from man-
ual interpretation of the 2008 NAIP and 2009 leaf-off imagery. 
A Minnesota Certifi ed Wetland Delineator manually deline-
ated 140 training polygons. The polygons ranged in size from 
approximately 50 image pixels to 300 pixels. Sample pixels 
representing the range of wetland and upland types present in 
the study area were selected from the training polygons using 
a simple random sampling method. This procedure resulted 
in a total of 5,412 wetland and upland training samples.

The NLCD Sampling Tool ver. 2.0, a utility included in the 
NLCD Mapping Tool, was used to create an input data fi le for 
use in See5. The NLCD Sampling Tool extracted values from 
each input dataset at each sampling point. The utility gener-
ated a tabular fi le which contained a row for each sampling 
point with comma separated values for each input data layer. 

In the second step, data mining/tree creation, the See5 
software package was used to create decision trees derived 
from the data tables created with the NLCD Sampling Tool. 
The boost, fuzzy thresholds, and global pruning options were 
enabled for classifi er construction. The boost option caused 
See5 to create decision trees using a recursive algorithm, in 
which results from previous trees were weighted more heavily 
in subsequent trees. The fuzzy threshold option established 
upper and lower bounds for each independent variable rather 

Soil Survey Geographic (SSURGO) maps, and the US National 
Elevation Data (NED; acquired in 2008, ten meter spatial reso-
lution, vertical accuracy estimated at 2.4 m). The extracted 
SSURGO drainage class (e.g., “hydric” and “poorly drained”) 
served as the soil-related input variables. For the Chanhassen 
study area, additional data used included a lidar-derived 
digital elevation model (lidar acquired in spring of 2006, 
three meter spatial resolution, 15 cm vertical resolution). 
For the FDL area, additional data used included: Radarsat-2 
C-band radar imagery (acquired 15 June 2009, “Fine” 4.7 m 
spatial resolution, quad-polarization, backscattering coef-
fi cients scaled in decibels), and leaf-off digital aerial images 
(acquired mid-May to early-June 2009, 0.5 m spatial resolu-
tion, color infra-red, 3.5 m horizontal accuracy). Though 
C-band radar imagery is not optimal for wetland mapping 
under forest canopy, we included such imagery for complete-
ness and because it was available at no cost. We recognize that 
additional polarimetric processing of the radar imagery may 
have yielded improved results, but software to perform that 
processing was not available. All data were projected to the 
Universal Transverse Mercator coordinate system, Zone 15, 
NAD83 datum. Both the NED and lidar-derived DEMs were 
hydrologically corrected before use. Topographic derivatives 
were computed for the elevation datasets: slope, Compound 
Topographic Index (CTI), and Curvature. The CTI is a well 
known measure of the likely wetness of an area. It is com-
puted with the formula CTI = ln (As / tan(B)), where As is the 
upstream contributing area to the pixel and B is the slope in 
radians (Gessler et al., 1995). The d-infi nity fl ow model was 
used to create the CTI. Curvature indicates local convexity or 
concavity for each pixel, with positive values indicating con-
cavity, zero values indicating linearity, and negative values 
indicating convexity (Parsons, 1979).

Wetland Classifi cations
Since the focus of this research was to test the effects on 
accuracy of data type selection and classifi cation scheme 
rather than classifi cation method, a common classifi cation 
approach was used throughout the various trials. We chose to 
use a decision tree classifi er in this research. A decision tree 
is a supervised algorithm that produces a classifi cation by 
developing a set of decision points, or nodes, that are cre-
ated by identifying diagnostic features in the training data. 
The resulting “tree” of nodes is then used to partition the 

   TABLE 3. SUMMARY OF WETLAND TYPES BY MNDNR CLASSIFICATION SCHEME

Chanhassen Fond du Lac

Class Count Acres % of Total Count Acres % of Total

Coniferous Wetland 0 0 0% 883 9743 27%

Deep Marsh 52 228 6% 148 1045 3%

Hardwood Wetland 47 25 0.6% 914 6033 17%

Seasonally Flooded 10 5 0.1% 0 0 0%

Shallow Marsh 132 1410 36% 270 2013 6%

Shrub Wetland 3 1 0.02% 2334 13584 37%

Water1 191 1635 42% 309 2949 8%

Wet Meadow 102 641 16% 408 1253 3%

Total Features 537 3944 100% 5266 36619 100.0%

Study Area 14515 27% 96119 38%
1 Water class included Lacustrine and PUB wetlands as well as non-vegetated stormwater detention basins.
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Several classifi cations were performed to determine the 
effects of various input datasets on classifi cation accuracy 
(Table 4). The fi rst classifi cation was a wetland versus upland 
discrimination using all of the available data types (e.g., 
imagery, topography, etc.). Then, areas identifi ed as wetlands 
were classifi ed at higher thematic detail according to the 
Cowardin and MNDNR schemes. These wetland type classifi ca-
tions were creating using a variety of inputs, including: the 
available data of all types, the available data without topogra-
phy, and the NAIP/optical imagery alone. Additional classifi ca-
tions in Chanhassen were performed to compare differences 
between high spatial resolution (3 m) and lower resolution 
(10 m) topography data as well as differences between the CTI 
and Curvature topographic derivatives. Additional classifi ca-
tions in Fond du Lac were performed to determine the effects 
of including C-band radar data and leaf-off imagery on the 
classifi cation accuracy. 

Because some areas identifi ed as wetland in the initial 
wetland/upland discrimination may not have been wetlands, 
upland was included as an output class in the wetland type 
classifi cations. A small percentage of pixels initially classi-
fi ed as wetland in the wetland/upland classifi cation were 

than using hard values. When constructing the decision tree, 
a value between the upper and lower bound was assigned a 
class by See5. The global pruning option allowed the See5 
algorithm to remove (prune) parts of the trees exhibiting 
relatively high error rates. The results of the data mining 
processes were decision trees that were used to produce the 
various classifi cation trials (Table 4). Decision trees were con-
structed for use in wetland versus upland classifi cation, wet-
land classifi cation to the Cowardin class level, and wetland 
classifi cation using the MNDNR scheme. Additional decision 
trees were constructed to evaluate the mapping accuracy dif-
ferences resulting from varying the type and number of input 
data sets (described below).

The fi nal step was to produce the classifi cations. The out-
put classes were those drawn from the training data. The area 
classifi ed was the geometric intersection of all input datasets. 
The classifi cations were performed using the See5 Classifi er 
Tool, a part of the NLCD Mapping Tool. The See5 output 
included an internal validation done using the input sampling 
points as a measure of error inherent in the resultant decision 
tree (i.e., contingency accuracy). Cross-validation was enabled 
to provide validation estimates using “out of bag” sampling. 

 TABLE 4. DATA USED SCENARIOS FOR WETLAND CLASSIFICATIONS
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Imagery

2008 NAIP Leaf On Imagery (R,G,B,IR) X X X X X X X X X X X X X X

2009 Spring Leaf Off Imagery (R,G,B,IR) X X X X

RaDAR Imagery (Quad Pol) X X X

Imagery – Derived

2008 NAIP NDVI X X X X X X X X X X X X X X

2009 Leaf Off NDVI X X X X

NDVI Difference X X X X

Topography

10m NED DEM X X X X X X

2-ft Hi-Res LiDAR Based DEM X X X

Topography Derivations

CTI (3m LiDAR derived) X X

CTI (10m NED derived) X X X X X

CTI (24m LiDAR degrade derived) X X

Slope (3m LiDAR derived) X X X

Slope (10m NED derived) X X X X X X

Curvature (3m LiDAR derived) X X

Curvature (10m NED derived) X X X X X

Other Data

SSURGO (Drainage Class) X X X X X X X X X X
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The wet meadow, shallow marsh, and deep marsh classes 
each had fewer than ten fi eld validation points and so were 
not included in the accuracy assessment.

The See5 software’s internal cross-validation process was 
employed to provide a measure of the agreement of the clas-
sifi cations’ outputs with the training data. With cross-valida-
tion, See5 performed a user-determined number of iterations 
of decision tree construction (i.e., folds) with a subset of the 
total training points and used the remainder of the points for 
validation. In this study, a 10-fold cross-validation was used, 
in which 10 percent of the training points were randomly set 
aside and the decision tree was constructed using the other 
90 percent of points. Repeated iterations were performed with 
different subsets of points set aside such that after ten itera-
tions each point had been used once in cross-validation.

Results
The results of this research are summarized in Tables 5 
through 14. Full error matrices are presented for the “All 
Data” scenario for each of the different classifi cation schemes 
and study areas. Due to space constraints, only the overall 
percent accuracy is given for the many other trials described 
in Table 4. Unless otherwise noted, all of the accuracy assess-
ment results in each study area were compared using the 
kappa-based z-statistic tests described in Congalton and Green 
(1999) and were found to be signifi cantly different at an alpha 
level of 0.05. Although there has been controversy surround-
ing the kappa coeffi cient (e.g., Foody, 1992; Pontius and 
Millones, 2011; Stehman and Czaplewski, 1998), we believe 
that kappa retains value in thematic accuracy assessment i.e., 
especially for comparison of error matrices.

Table 5 shows the results of the wetland/upland dis-
crimination in the Chanhassen study area using the All Data 
scenario. The overall accuracy was 93 percent, with low 
errors of omission and commission. When the decision tree 
classifi er was trained to identify Cowardin classes rather 
than the simpler wetland/upland determination (Table 6), 
overall performance remained strong at 86 percent; however 
the user’s and producer’s accuracies of the PFO class were 
both relatively low. The MNDNR error matrix is shown in 
Table 7. The overall accuracy of this trial was lower than the 
preceding Cowardin class mapping, at 77 percent. Two of the 
classes exhibited very high errors of omission and/or com-
mission: hardwood wetland and deep marsh. Tables 8 and 9 
show the See5 cross-validation (X-Val) and accuracy assess-
ment (Assess) results for the other trials conducted in the 
Chanhassen area. The combination of high-resolution optical 
imagery, SSURGO, topography, and a topographical derivative 
performed signifi cantly better (as measured by the z-test) than 
the trials without topographical information; and, much better 
than the optical imagery and SSURGO data alone. However, 
the differences between the lidar versus NED trials and the 
CTI versus Curvature trials were not statistically signifi cant. 
Thus, the source of the topographic data and the choice of 
topographic derivative were not important infl uences on the 
overall accuracies of the trials.

subsequently classifi ed as upland in the wetland type classifi -
cations and were maintained as such in the accuracy assess-
ment. Areas incorrectly identifi ed as upland were included 
in the error matrices, but the accuracy of the upland class 
within the wetland type classifi cations was not assessed. This 
approach was necessary so that the overall accuracy estimates 
of the various classifi cation trials would better refl ect the 
performance of the wetland type classifi cations rather than 
wetland/upland discrimination.

Accuracy Assessment
The accuracy of each classifi cation was assessed by com-
parison with ground and image-based reference data. Error 
matrices were calculated using the methods described in 
Congalton and Green (1999). For the Chanhassen pilot area, 
the city’s SWMP was used as the reference data source. In the 
SWMP, uplands, wetlands, and water features throughout the 
city were identifi ed and observed in the fi eld. Mapping for 
all areas within city was completed using a combination of 
fi eld GPS delineation and image interpretation. A Minnesota 
Certifi ed Wetland Delineator validated all polygons. Further 
methodology is described in City of Chanhassen (2006). To 
create the reference data for this study, a random sample of 
10,000 points was generated throughout the city. This sample 
was independent of the 10,000 samples used in training the 
classifi ers. Wetland classes were extracted from the SWMP for 
each point. Wetland polygons in the SWMP with two or more 
wetland types noted were considered to be the dominant 
wetland type. A simple random sampling scheme resulted in 
7,343 upland points and 2,657 wetland points. Wet features 
in Chanhassen consisted of water, forested wetlands, and 
emergent wetlands, as listed in Tables 1 and 2. Wetland type 
classifi cation by Cowardin class included water (L, PUB, 
PAB), emergent (PEM), scrub/shrub (PSS), and forested (PFO) 
wetlands. Scrub/shrub comprised a very small area of the 
wetland cover in the study area and contained only fi ve fi eld 
validation points; therefore that class was not included in 
the accuracy assessment. The MNDNR classifi cation included 
water, wet meadow, shallow marsh, deep marsh, shrub 
wetland, seasonally fl ooded, and hardwood wetland classes. 
Seasonally fl ooded and shrub wetlands each had fewer than 
ten fi eld validation points and were removed from the accu-
racy assessment to maintain statistical validity. 

For FDL, fi eld reference data were collected 13-17 July 
2009 by a team from the University of Minnesota, which was 
led by a Minnesota Certifi ed Wetland Delineator. A stratifi ed 
random sampling scheme based on the existing NWI classes 
was used within wetland types to generate a sample of 250 
wetland sites. An additional 150 sites were randomly gener-
ated within uplands. Data collected at each site included 
land-cover/land-use type, vegetative species present, crown 
closure percent, neighboring land-cover/land-use, pano-
ramic and canopy photographs, and general notes about the 
site. A total of 195 points was collected during one week of 
fi eld work. These points were used as reference data for the 
accuracy assessment for the FDL study area. These reference 
data were independent of the training polygons used in deci-
sion tree development. Wet features in Fond du Lac consisted 
primarily of forested and scrub/shrub type wetlands. Wetland 
type classifi cation by Cowardin class included water (L, 
PUB, PAB), emergent (PEM), scrub/shrub (PSS), and forested 
(PFO) wetlands. Most of the fi eld validation points were 
scrub/shrub and forested wetlands, so emergent wetlands 
were not included in the accuracy assessment due to insuf-
fi cient validation points to create statistically signifi cant error 
estimates for that class. Wetland type classifi cation by MNDNR 
included water, wet meadow, shallow marsh, deep marsh, 
shrub wetland, hardwood wetland, and coniferous wetland. 

TABLE 5. CHANHASSEN ALL DATA SCENARIO – WETLAND/UPLAND ERROR MATRIX

Reference Data

M
ap

 D
at

a

Upland Wetland Map Total User’s Acc.

Upland 6945 296 7241 96

Wetland 398 2361 2759 86

Ref. Total 7343 2657 10000

Prod. Acc. 95 89 93
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TABLE 6. CHANHASSEN ALL DATA SCENARIO – COWARDIN CLASS ERROR MATRIX

Reference Data

UPL PEM W PFO PSS Map Tot User.Acc.

M
ap

 D
at

a
UPL 0 230 34 11 0 276 0

PEM 0 1262 53 8 0 1323 95

W 0 41 1013 0 0 1054 96

PFO 0 1 0 2 0 3 67

PSS 0 0 0 0 0 0 0

Ref. Total 0 1534 1101 21 0 2656*

Prod.Acc. 0 82 92 10 0 86

*One wetland sample was removed because the Cowardin class reference label was incorrect.

 TABLE 7. CHANHASSEN ALL DATA SCENARIO – MNDNR ERROR MATRIX

Reference Data

Upl Shall. Mrsh. Water Wet Mead Deep Marsh Hdwd Wet Seas. Flood Shrub Wet. Map Total User Acc

M
ap

 D
at

a

Upland 0 126 42 104 37 12 0 0 321 -

Shal Marsh 0 743 23 64 30 2 0 0 862 86

Water 0 22 1005 11 39 0 0 0 1077 93

Wet Mead 0 37 14 251 14 3 0 0 319 79

Deep Mrsh 0 9 17 7 31 2 0 0 68 46

Hdwd Wet 0 2 0 2 0 2 0 0 6 33

Seas Flood 0 0 0 1 0 0 0 0 1 -

Shrub Wet 0 0 0 0 1 0 0 0 1 -

Ref. Total 0 939 1101 442 152 21 0 0 2655*

Prod.Acc. - 79 91 57 20 10 - - 77

*Two wetland samples were removed because the MNDNR class reference labels were incorrect.

TABLE 9. CHANHASSEN TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY ASSESSMENT (CONTINUED) 

Classifi cation Scheme

Hi-Res Topo
Curvature Only

NED Topo
Curvature Only

Hi-Res Topo
CTI Only

NED Topo
CTI Only

X-Val Assess X-Val Assess X-Val Assess X-Val Assess

Wetland/Upland 86 93‡ 85 91‡ 90 92‡ 86 91‡

Cowardin Class 81 84‡ 81 84‡ 85 84‡ 82 85‡

MNDNR 77 76‡ 76 77‡ 79 75‡ 77 77‡

 TABLE 8. CHANHASSEN TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY ASSESSMENT, PART 1; 
ACCURACY ASSESSMENT VALUES (“ASSESS”) MARKED WITH ‡ WERE NOT SIGNIFICANTLY DIFFERENT FROM EACH OTHER WITHIN CLASSIFICATION SCHEMES

Classifi cation Scheme

All Data NED Topo No Topo NAIP Only

X-Val Assess X-Val Assess X-Val Assess X-Val Assess

Wetland/Upland 90 93‡ 86 92‡ 82 89 69 78

Cowardin Class 85 86‡ 82 84‡ 77 80 64 55

MNDNR 81 77‡ 77 76‡ 67 61 60 43



J u l y  2 0 1 3   PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING620

Tables 10 through 14 present the results of the FDL study 
area trials. Table 10 shows the wetland/upland discrimina-
tion using the All Data scenario. Both the overall and most 
of the user’s/producer’s accuracies were lower than in the 
Chanhassen area. We attribute these differences to complex-
ity introduced by the greater variety of wetland types and 
the large extent of forest canopy in FDL. Tables 11 and 12 
show the Cowardin and MNDNR classifi cation results. The 
class-specifi c accuracy estimates were also generally lower 
than in Chanhassen. In both schemes, upland class commis-
sion errors had greater impacts on the overall accuracy than 
in Chanhassen. Tables 13 and 14 show cross-validation and 

overall percent accuracy estimates for the FDL trials. The 
FDL study area trials included input data types that were not 
available in Chanhassen, such as spring leaf-off aerial images 
and Radarsat-2 imagery. As was the case in Chanhassen, the 
exclusion of topography data and its derivatives had the 
largest negative impact on mapping accuracy. An unexpected 
result was that the inclusion of leaf-off and radar imagery had 
no statistically signifi cant impact on accuracy in any of the 
classifi cation schemes.

Discussion and Conclusions
The overarching goal of this research was to examine the wet-
land mapping accuracy effects of varying input data types and 
classifi cation schemes using high spatial resolution datasets. 
To that end, several classifi cation trials were performed in 
two physiographically different study areas. In aggregate, the 
results from both areas broadly suggest that more and varied 
input data can improve mapping accuracy, but there were 
unexpected fi ndings along with those more typically seen in 
the relevant literature. 

First, as expected, including topography information 
signifi cantly improved classifi cation accuracy across the 
different classifi cation schemes and the input data trials in 
both study areas. Since the ability to at least temporarily hold 
water is a defi ning characteristic of wetlands, topographic 
position is important to discriminate both wetland versus 

TABLE 10. FDL ALL DATA SCENARIO - WETLAND/UPLAND ERROR MATRIX

Reference Data

M
ap

 D
at

a

Upland Wetland Map Total User’s Acc.

Upland 27 37 64 42

Wetland 4 127 131 97

Ref. Total 31 164 195

Prod. Acc. 87 77 79

 TABLE 11. FDL ALL DATA SCENARIO - COWARDIN CLASS ERROR MATRIX

Reference Data

UPL PSS PFO PEM W Map Tot User’s Acc.

M
ap

 D
at

a

UPL 0 14 20 0 1 35 -

PSS 0 31 14 0 0 45 69

PFO 0 8 47 0 0 55 85

PEM 0 8 1 0 0 9 -

W 0 0 0 0 14 14 100

Ref. Total 0 61 82 0 15 158*

Prod. Acc. - 51 57 - 93 58

*Six wetland samples were removed because the Cowardin class reference labels were incorrect.

TABLE 12. FDL ALL DATA SCENARIO - MNDNR ERROR MATRIX

Reference Data

Upl Shrub Wet. Conif. Wet. Shal. Marsh Water Hdwd Wet Deep Marsh Wet Mead Map Tot User’s Acc.

M
ap

 D
at

a

Upland 0 13 7 0 1 12 0 0 33 -

Shrb. Wet 0 34 11 0 0 6 0 0 51 67

Conif.Wet 0 3 25 0 0 2 0 0 30 83

Shl. Mrsh 0 8 1 0 0 1 0 0 10 -

Water 0 0 0 0 14 0 0 0 14 100

Hdwd W. 0 2 2 0 0 15 0 0 19 79

Dp. Mrsh 0 0 0 0 0 0 0 0 0 -

W. Mead. 0 1 0 0 0 0 0 0 1 -

Ref. Total 0 61 46 0 15 36 0 0 158*

Prod. Acc. - 56 54 - 93 42 - - 55

 *Six wetland samples were removed because the MNDNR reference class labels were incorrect.
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upland and different wetland types. Two unexpected results 
were that the source of the elevation information, and the 
choice of topographic derivative did not have statistically 
signifi cant infl uences on accuracy. The NED and lidar-derived 
(“Hi-Res”) topography data produced similar results, which 
suggest that in areas like Chanhassen, with relatively low 
wetland and topographic diversities, the coarser resolu-
tion NED (10 m) may be suffi cient. The comparisons of the 
CTI with Curvature also indicated no signifi cant differences 
in accuracy, no matter whether the topographic derivatives 
were computed from the NED or lidar-derived DEMs, or which 
classifi cation scheme or study area was examined. The CTI is 
a well known method of determining the wetness potential of 
an area, but it requires signifi cant computational resources to 
create for large areas at high spatial resolution. It also requires 
a hydrologically corrected DEM, while Curvature does not. 
These results indicate that Curvature may represent a suitable 
alternative in some situations. 

Second, the choice of classifi cation scheme had a signifi -
cant effect on classifi cation accuracy. The relatively simple 
wetland versus upland discrimination unsurprisingly resulted 
in the highest accuracy estimates in both study areas. In con-
trast, the accuracies of the wetland type classifi cations were 
lower, and the results were not consistent between the study 
areas. In Chanhassen, the Cowardin and MNDNR accuracy 
estimates (Tables 8 and 9: “Assess”) were signifi cantly lower 
than the wetland/upland discrimination, but were not as dif-
ferent as in FDL. In Chanhassen, the Cowardin class scheme 
performed much better than did the MNDNR scheme, while in 
FDL both type classifi cations’ accuracy estimates were low. We 
attribute these differences to the lower wetland diversity in 
Chanhassen and the higher diffi culty of mapping the forested 
wetlands in FDL. Of particular note is that the MNDNR classifi -
cation, which was developed to be suitable for mapping with 
remotely sensed data, performed worse than the Cowardin 
scheme in nearly every classifi cation trial. A likely reason for 
this discrepancy is that the MNDNR scheme is more themati-
cally detailed i.e., especially in specifying multiple types of 
emergent wetlands.

Third, the differences between the internal See5 cross-
validation and the accuracy assessment results raise interest-
ing questions. In Chanhassen, the cross-validation values 
were much more similar to the accuracy estimates than they 

were in FDL. This indicates that the out-of-bag sampling per-
formed during See5 classifi cations fairly closely represented 
the actual accuracies of the Chanhassen results as measured 
by comparison with the reference data. However, the cross-
validation values in FDL were substantially higher in every 
combination of trial and classifi cation scheme. These large 
discrepancies may have been caused by the added mapping 
complexity in FDL; however another important factor may be 
that fi eld-based reference data were used to assess the accu-
racy of classifi cations created with image-based training data. 
By comparison, in Chanhassen the same dataset was used for 
training and assessment (though with independent training 
and reference samples). In FDL, the training data were col-
lected by interpreting aerial images, while the reference data 
were collected by a fi eld crew over one week. Thus, it is likely 
that the fi eld team made determinations based on informa-
tion that was not visible on the aerial images, such as counts 
of obligate wetland plants. In addition, the image interpreter 
had access to imagery collected on multiple dates, which may 
have further increased the effective differences between the 
training and reference databases. Finally, while the train-
ing database contained representatives of all Cowardin and 
MNDNR classes present in the study area, the fi eld database 
lacked suffi cient representatives of some classes, which 
resulted in a small downward bias in the overall accuracy 
estimates.

Fourth, these results show that the inclusion of leaf-off 
and C-band radar imagery did not increase classifi cation 
accuracies in FDL. Based on existing literature, challenges 
to the use of C-band radar in forested areas were expected. 
Incorporating derivatives of the radar imagery such as polari-
metric analyses may have improved the results, but software 
to perform such tests was not available. Lack of accuracy 
improvement with the inclusion of leaf-off imagery was sur-
prising. The FDL area contains a mix of coniferous and decidu-
ous vegetation. Spring leaf-off imagery was expected to allow 
for better viewing of ground features and wetness in decidu-
ous areas; however both the cross-validation and error matri-
ces results showed no signifi cant change in accuracy with its 
inclusion. It is possible that both the radar and leaf-off results 
were affected by the especially dry conditions present in FDL 
during the time of image acquisition (spring/summer 2009), 
since normal spring wetness that would have been visible on 
the imagery may not have been as evident. A further potential 
complicating factor with both the leaf-off and NAIP imagery is 
differences in illumination levels of the forest canopy. Such 
differences can be somewhat ameliorated with smoothing 
of the imagery; however we chose not to degrade the spatial 
resolution out of concern that doing so would decrease the 
mapping accuracies of non-forest classes.

In summary, this research suggests the following conclu-
sions related to mapping wetlands with high spatial resolu-
tion geospatial data: (a) Mapping accuracy is greatly improved 
by including topography data with optical imagery; (b) The 
source of the topography data is less important than its 
presence or absence; (c) Simple topographic derivatives like 

TABLE 13. FDL TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY ASSESSMENT, PART 1; ACCURACY ASSESSMENT VALUES (“ASSESS”) 
MARKED WITH ‡ WERE NOT SIGNIFICANTLY DIFFERENT FROM EACH OTHER WITHIN CLASSIFICATION SCHEMES

Classifi cation Scheme

All Data No Leaf Off No Radar No Topo

X-Val Assess X-Val Assess X-Val Assess X-Val Assess

Wetland/Upland 96 79‡ 96 77‡ 96 78‡ 92 71

Cowardin Class 93 58‡ 93 60‡ 93 54 87 44

MNDNR 93 56‡ 92 58‡ 93 53 86 43

TABLE 14. FDL TRIALS - SEE5 CROSS VALIDATION VERSUS ACCURACY 
ASSESSMENT (CONTINUED)

Classifi cation 
Scheme

Optical Only NAIP Only

X-Val Assess X-Val Assess

Wetland/Upland 84 50 76 42

Cowardin Class 80 29 73 26

MNDNR 78 32 71 23
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Curvature can provide mapping accuracy similar to the more 
complex and labor intensive CTI; (d) C-band radar and leaf-off 
imagery did not improve mapping accuracy in an area with 
signifi cant forest canopy; (e) Simpler wetland classifi cations 
schemes are more likely to perform well than more complex 
schemes i.e., even those designed with remote sensing in 
mind; and (f) Mapping wetlands in forested areas is challeng-
ing even with the inclusion of several different geospatial 
data types.
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